第4章 シミュレーション

学習目標

- (1) シミュレーションの方法を理解する.
- (2) 初期値を変えてみる.
- (3) ゴールシークを理解する.
- (4) シミュレーションの結果をまとめる.

本章は、専修大学商学部 高萩栄一郎の著作である.

1 はじめに・概要

本章では,住宅ローンを題材に,表計算ソフトウエアを使ってシミュレーションを行います.

(1) 借入額,年利,毎回の返済額を入力します (B4:B6)

(2) 年利から月利を求めます (B12:B14).

(3) 1 回目(最初の月)の残高を計算し(D4:H4),以降の回もほぼ同じ計算式を設定します(D5:H243)

(4) 240 ヶ月後(20 年後)の残額などを表示します (B8:B10)

(5) その 240 ヶ月後の残額 (B8) を 0 にするように,返済額,借入額,年利などを調整します(シミュレーション).

	A	В	С	D	E	F	G	Н
1	住宅ローンシミュレーショ	シー						
2	240ヶ月(240回, 20年ロ [、]	ーン)						
З				回数	期首残額	利息	返済額	期末残額
4	借入額	15,307,167		1	15,307,167	62,363	100,000	15,269,531
5	年利	5.00%		2	15,269,531	62,210	100,500	15,231,240
6	返済額	100,000		3	15,231,240	62,054	100,000	15,193,294
7	ボーナス時返済額	100,500		4	15,193,294	61,899	100,000	15,155,194
8	240期末残額	0		5	15,155,194	61,744	100,000	15,116,938
9	総返済額	24,020,000		6	15,116,938	61,588	100,000	15,078,526
10	利息額合計	8,712,833		7	15,078,526	61,432	100,000	15,039,958
11	月利の計算			8	15,039,958	61,275	100,500	15,000,733
12	年利+1	1.0500		9	15,000,733	61,115	100,000	14,961,847
13	12乗根	1.0041		10	14,961,847	60,956	100,000	14,922,804
14	月利(12乗根-1)	0.41%		11	14,922,804	60,797	100,000	14,883,601
15				12	14,883,601	60,638	100,000	14,844,239

図1 完成例(一部)

- 緑のセル:値を変更してみるセル(仮の値)
- 赤のセル:計算式を入力するセル
- 青のセル:計算式を複写で設定するセル

2 住宅ローンのシミュレーション

2.1 初期値の入力

	Α	В	С	D	E	F	G	Н	
1	住宅ローンシミュレーショ	レ							
2	240ヶ月(240回, 20年口・	-ン)							
3				回数	期首残額	利息	返済額	期末残額	
4	借入額	25,000,000							
5	年利	3.50%							
6	返済額	120,000							
7	ボーナス時返済額								
8	240期末残額								
9	総返済額								
10	利息額合計								
11	月利の計算								
12	年利+1								
13	12乗根								
14	月利(12乗根-1)								

図2 初期値の入力

Excel を起動し, 新規 → 白紙のブック で, 空白のワークシート表示します. 図 2 のように, 背景が白のセル (A1:A14 と D3:H3) と緑のセル (B4,B5,B6) 仮の値を入力します. B5 のセルは, 0.035 と入力し, セルの書式設定で, 表示形式を パーセンテージにします. また, このシート名を「通常」にしておきましょう.

2.2 月利の計算

	Α	В	С	D	E	F	G	Н	
1	住宅ローンシミュレーション								
2	240ヶ月(240回, 20年口~	-ン)							
3				回数	期首残額	利息	返済額	期末残額	
4	借入額	25,000,000							
5	年利	3.50%							
6	返済額	120,000							
7	ボーナス時返済額								
8	240期末残額								
9	総返済額								
10	利息額合計								
11	月利の計算								
12	年利+1	1.0350							
13	12乗根	1.0029							
14	月利(12乗根-1)	0.29%							
1 5									

図3 月利の計算

返済を月単位で行うので,月単位で計算します.そこで,年利を月利に変換します.また,本テキストでは,すべて月単 位の複利計算をします.実務では,1年以上を複利,1年未満を単利で計算することが多いですが,複雑になるので,単純化 して月単位の複利で計算します.

	セル	計算式	内容
_	B12:	=B5+1	毎年 何倍になるのかを計算
	B13:	=B12∧(1/12)	毎月何倍なるのか? 12 乗すると B11 の値になる値(12 乗根)
	B14:	= B13-1	B13 は,毎月何倍になるかを示す値.B14 は,B13 から 1 を引いて,月利を求めます.

2.3 1期目の計算

	Α	В	С	D	E	F	G	Н	
1	住宅ローンシミュレーショ	シー							
2	240ヶ月(240回, 20年ロ [、]	-ン)							
3				回数	期首残額	利息	返済額	期末残額	
4	借入額	25,000,000		1	25,000,000	71,772	120,000	24,951,772	
5	年利	3.50%							
6	返済額	120,000							
7	ボーナス時返済額								
8	240期末残額								
9	総返済額								
10	利息額合計								
11	月利の計算								
12	年利+1	1.0350							
13	12乗根	1.0029							
14	月利(12乗根-1)	0.29%							
1 5									

図4 1期目の計算

図4は、1期目の計算です.その期(月)の最初の残額で、期末までに、残額は、利息分増え、返済分減少します.

期末残高 := 期首残高 + 利息額 - 返済額

利息額 := 期首残高*月利

セル 計算式 内容

D4 1 1 回目

E4: =B4 第1回の期首残額は借入額

F4: =E4*\$B\$14 利息の計算 (期首残高×月利).下に複写するとき B14(月利)は固定なので B14 は絶対参照にします.

G4: =\$B\$6 返済額は, B6 のセル.下に複写するとき, B6 は固定なので B6 は絶対参照にします.

H4: =E4+F4-G4 期末残高を 期首残高 + 利息 – 返済額で計算します.

2.4 2期目以降の計算

	А	В	С	D	E	F	G	Н
1	住宅ローンシミュレーショ	シー						
2	240ヶ月(240回, 20年ロ [、]	-ン)						
3				回数	期首残額	利息	返済額	期末残額
4	借入額	25,000,000		1	25,000,000	71,772	120,000	24,951,772
5	年利	3.50%		2	24,951,772	71,634	120,000	24,903,406
6	返済額	120,000		3	24,903,406	71,495	120,000	24,854,902
7	ボーナス時返済額			4	24,854,902	71,356	120,000	24,806,258
8	240期末残額			5	24,806,258	71,216	120,000	24,757,474
9	総返済額			6	24,757,474	71,076	120,000	24,708,550
10	利息額合計			7	24,708,550	70,936	120,000	24,659,486
11	月利の計算			8	24,659,486	70,795	120,000	24,610,281
12	年利+1	1.0350		9	24,610,281	70,654	120,000	24,560,934
13	12乗根	1.0029		10	24,560,934	70,512	120,000	24,511,446
14	月利(12乗根-1)	0.29%		11	24,511,446	70,370	120,000	24,461,816

図5 2期目以降の計算

セル 計算式 内容

D5:	= D4 + 1	回数を1増やして表示
E5:	=H4	前の期の期末残額をその期の期首残額にします.

利息,返済額,期末残額の計算式は、1回目と同じなので次のようにします.

複写元 F4:H4 複写先 F5:H5

3回目以降の計算式は、2回と同じなので次のようにする. 243 行目が 240 回になります.

複写元 D5:H5 複写先 D6:H243

2.5 240 期末残額,総返済額,利息額合計の計算

	A	В	С	D	E	F	G	Н
1	住宅ローンシミュレーショ	ン						
2	240ヶ月(240回, 20年口 [、]	-ン)						
3				回数	期首残額	利息	返済額	期末残額
4	借入額	25,000,000		1	25,000,000	71,772	120,000	24,951,772
5	年利	3.50%		2	24,951,772	71,634	120,000	24,903,406
6	返済額	120,000		3	24,903,406	71,495	120,000	24,854,902
7	ボーナス時返済額			4	24,854,902	71,356	120,000	24,806,258
8	240期末残額	8,372,777		5	24,806,258	71,216	120,000	24,757,474
9	総返済額	28,800,000		6	24,757,474	71,076	120,000	24,708,550
10	利息額合計	12,172,777		7	24,708,550	70,936	120,000	24,659,486
11	月利の計算			8	24,659,486	70,795	120,000	24,610,281
12	年利+1	1.0350		9	24,610,281	70,654	120,000	24,560,934
13	12乗根	1.0029		10	24,560,934	70,512	120,000	24,511,446
14	月利(12乗根-1)	0.29%		11	24,511,446	70,370	120,000	24,461,816
15				10	27 A61 016	70.007	120.000	2// /12/0//2

図 6 240 期末残額,総返済額,利息額合計の計算

セル	計算式	内容
B8:	=\$H\$243	240 期 期末残高: 20 年かけて返済したのちの残額を表示
B9:	=SUM(G4:G243)	総返済額: 240 回での返済額の合計(G 列の合計)
B10:	=SUM(F4:F243)	利息額合計: 利息額の合計(F 列の合計)

2.6 期末残額をグラフ化

図7 期末残額をグラフ化

- (1) D3:H243 を範囲指定
- (2) 挿入→ 散布図 (直線)
- (3) $\left| \overline{\tau} \overline{\tau} \overline{\tau} \right| \rightarrow \left| \overline{\tau} g \right|$ (3) 選択
- (4) 系列を 期末残高 を除いてチェックを外します

動画:シミュレーション:期末残高のグラフ化

2.7 返済額を調整して,240 期末残をほぼ0 に

	А	В	С	D	E	F	G	Н
1	住宅ローンシミュレーショ	シー						
2	240ヶ月(240回, 20年口・	-ン)						
3				回数	胡子球館	利息	返済額	期末残額
4	借入額	25,000,000			仮溶額を調整 -	71,772	144,000	24,927,772
5	年利	3.50%				71 565	144 000	24,855,338
6	返済額	1 44,000 -		3	240世	実球 直を(于)	デルニオス	695
7	ボーナス時返済額			4	240 ,	小次同では	. K U (C Y ' D .	
8	240期末残額	98,388-		b	24,709,843	10,959	144,000	24,636,783
9	総返済額	34,560,000		6	24,636,783	70,730	144,000	24,563,513
10	利息額合計	9,658,388		7	24,563,513	70,519	144,000	24,490,032
11	月利の計算			8	24,490,032	70,308	144,000	24,416,340
12	年利+1	1.0350		9	24,416,340	70,097	144,000	24,342,437
13	12乗根	1.0029		10	24,342,437	69,885	144,000	24,268,322
14	月利(12乗根-1)	0.29%		11	24,268,322	69,672	144,000	24,193,994
10				10	24102004	60.450	1 4 4 0 0 0	0/110/050

図8 返済額を調整して、240 期末残をほぼ0 に

(1) 借入額(B4), 年利(B5)を設定(入力)する.

- (2) 返済額 (B6) を変更すると、それに従って、240 期期末残高 (B8) が変化します.
- (3) 返済額を調整して、240 期期末残高をほぼ0にします
 - ・返済額を増額 → 240 期期末残高 減少
 ・
 - ・返済額を減額 → 240 期期末残高 増大
 ・

動画:シミュレーション:返済額を調整して、240期末残をほぼ0に

2.8 ゴールシーク

表計算には,あるセル(変化させるセル)の値を適当に変化させ,別のセル(数式入力セル)をある値(目標値)にするこ とができます.この機能をゴールシークといいます.借入額と年利をきめ,返済額を求めます.

(1) リボンの データ
$$\rightarrow$$
 What-If 分析 \rightarrow ゴールシーク
(2) ゴールシークの設定

数式入力セル: B8 ← B8 (最終期の残額) を

目標値: $0 \leftarrow 0$ にします.

変化させるセル: B6 \leftarrow B6 (返済額) を変化させることによって

返済額が 144,285 となり,240 期末残額が 0 になりました.借入額 2500 万円,利率 3.50% では,月 144,285 円返済してい けば,20 年後 (1200 回) で返済し終わることがわかりました.

動画:シミュレーション:ゴールシーク

2.9 練習問題 4-1

すべて,240回で返済するものとします.

- (1-1) 借入額 2000 万円 年利1%のときの返済額を求めなさい.
- (1-2) 借入額 2000 万円 年利 6%のときの返済額を求めなさい.
- (1-3) 借入額 (3000+ 学生番号(下3桁)) 万円,利率 (学籍番号の下1桁+1)%のときの返済額を求めなさい.
- (1-4) 年利 1%, 返済額 100,000 円のとき, 240 回で返済できる借入額を求めなさい.
- (1-5) 年利 2%, 返済額 100,000 円のとき, 240 回で返済できる借入額を求めなさい.
- (1-6) 返済額を 100,000 円とし,年利を 1%,2%,...,10% のときの,240 回で返済できる借入額を求め,横軸を年利,縦軸を 返済できる借入額とするグラフを作成しなさい.

3 ボーナス払い

前節の例題では, B7のボーナス払いは利用しませんでした.本節では,ボーナス払いの月(6ヶ月ごととする)は, B6の 返済額ではなく, B7のボーナス時返済額の値を使うことにして,シミュレーションを行います.

3.1 ボーナス払い用のシートを作成

シート「通常」とほぼ同じなので、シート「通常」をコピーして使います.

- (1) シート名「通常」を右クリック
- (2)「移動またはコピー」をクリック
- (3)「シートの移動またはコピー」のウインドウ左下「コピーを作成する」にチェックを入れ [OK] をクリックします.
- (4)「通常(2)」というシートが作成されるので名前の変更で、「ボーナス払い」に変更します.

3.2 ボーナス払いの条件

- ボーナス回の返済額として、セル B7 に. 仮に、300000(30万)と入力しておきましょう.
- ボーナス回は、6回ごとで、2,8,14,20,26,...とします.この場合、ボーナス月が6月と12月であり、返済が5月から始まるとしてシミュレーションを行っています。6月と12月は、回を6で割って余りが2の回をボーナス払いの月とします。

3.3 ボーナス払いの計算式

	A	В	С	D	E	F	G	Н
1	住宅ローンシミュレーショ	シー						
2	240ヶ月(240回, 20年口~	-ン)						
3				回数	期首残額	利息	返済額	期末残額
4	借入額	25,000,000		1	25,000,000	71,772	200,000	24,871,772
5	年利	3.50%		2	24,871,772	71,404	300,000	24,643,177
6	返済額	200,000		3	24,643,177	70,748	200,000	24,513,925
7	ボーナス時返済額	300,000		4	24,513,925	70,377	200,000	24,384,302
8	240期末残額	-24,979,317		5	24,384,302	70,005	200,000	24,254,307
9	総返済額	52,000,000		6	24,254,307	69,632	200,000	24,123,938
10	利息額合計	2,020,683		7	24,123,938	69,257	200,000	23,993,196
11	月利の計算			8	23,993,196	68,882	300,000	23,762,078
12	年利+1	1.0350		9	23,762,078	68,219	200,000	23,630,296
13	12乗根	1.0029		10	23,630,296	67,840	200,000	23,498,137
14	月利(12乗根-1)	0.29%		11	23,498,137	67,461	200,000	23,365,597

図9 ボーナス払いの計算式を追加

- 剰余を計算する関数 → mod
- mod(n,m) で, $n \div m$ の余り(剰余)を計算します. mod(11,6)は, $11 \div 6 = 1$ あまり5 で5となります.
- 回数の剰余は, mod(回数のセル,6) で計算し, 2 に等しかったらボーナス時の返済額, それ以外は通常回の返済額
- 計算式は、「=if (条件, 条件が真の時, 条件が偽の時)」のようになります.
 - 条件上記のボーナス月の判定
 - 真の時 ボーナス月の返済額が書かれたセル(絶対参照)
 - 偽の時通常月の返済額が書かれたセル(絶対参照)

• 図 9 の赤枠のセルのように、ボーナス回の返済額が変化したと思います.

3.4 シミュレーション

- 借入額,利率を適当に想定し,返済額とボーナス時返済額を調整して,240期末残高をほぼ0にしましょう.
- 借入額,利率を適当に想定し,返済額を決めたとき,240 期末残高を0にするには,ボーナス時返済額をいくらになるかをゴールシークを使って求めなさい.

3.5 練習問題 4-2

すべて 240 回で返済するものとします.

- (1) 借入額 3000 万円, 年利 3.5%, 通常月返済額 10 万のとき, ボーナス月支払いをいくらにすればよいかをゴールシー クを使って求めなさい.
- (2) 年利 5%,通常月返済額 10 万,ボーナス月払い (10 万 + 学籍番号(下 3 桁) × 100) 円のとき,いくらまでの借入金 を支払えるかゴールシークを使って求めなさい. ヒント:借入額のセルを変化させるセルにします.

3.6 練習問題 4-3

シート「ボーナス払い」をコピーして,「ボーナス 2」を作成し,そのシートを1年に一度(12回に1回)ボーナス払いと するように計算式を変更せよ.ボーナス月は,11,23,35,...回とする.

3.7 練習問題 4-4

シート「ボーナス払い」をコピーして,「ボーナス 3」を作成せよ.ボーナス時支払い額を,通常月の2倍になるように変更し,借入額 2000 万円利率 3% として,通常月の返済額を計算しなさい.

ヒント:ボーナス時の支払額は,返済額の2倍とする.ボーナス時の返済額のセル(B7)は,返済額のセル(B6)の2倍なので、B7は単純に「= B6 * 2」とします.

3.8 ソルバー(参考)

ゴールシークに似た機能として, Excel にはソルバーという機能があります.ソルバーは, ゴールシークと同様にセルの 値を変化させ, 目的のセルの値をある値に近づたり, 最大化や最小化を行います. 変化させるセルを複数にしたり, セル間 の関係(制約条件)を決めたりすることもできます.

ゴールシークの数式入力セルはソルバーの目的セル,ゴールシークの変化セルはソルバーの変数セルに対応します.ソル バーで 2.8 節のゴールシークの条件と同じことをするには,次のようにします.

リボンのデータ→分析→ソルバー

(2) ソルバーの設定

目的セル:	B8	
目標值:	指定值	0
変数セルの変更:	B6	
制約条件の対象:	指定なし	

 ソルバーのボタンが無い場合,リボンのファイル→オプション→アドイン→管理:Excel アドイン→設定

 で, ソルバーアドインを有効にします(動画:シミュレーション:ソルバーの設定)).

 動画:シミュレーション:ゴールシークと同様の計算

	ソルバーのパラメーター			>
目的セルの設定:(工) \$B	\$9]
目標値: 〇 最大値(<u>M</u>) 💿 最	小値(№) ○ 指定値:(⊻)	0]
変数セルの変更:(<u>B</u>)				
\$B\$6,\$B\$7			1	
制約条件の対象:(U)				
\$B\$6 <= 150000 \$B\$7 <= \$B\$6+200000		^	追加(<u>A</u>)	
\$B\$7 >= \$B\$6 \$B\$8 = 0			変更(<u>C</u>)	
			削除(<u>D</u>)	
			すべてリセット(<u>R</u>)	
		~	読み込み/保存(L)	
✓ 制約のない変数を非負数にする	3(<u>K</u>)			
解決方法の選択:(<u>E</u>)	GRG 非線形	*	オプション(<u>P</u>)	
解決方法				
滑らかな非線形を示すソルバー問 レックス エンジン、滑らかではないり ださい。	題には GRG 非線形エンジン、約 非線形を示すソルバー問題にはエ	泉形を示すソル ボリューショナリ	バー問題には LP シンプ − エンジンを選択してく	
<u> へ</u> ルプ(<u>H</u>)		解決(<u>S</u>)	閉じる(<u>O</u>)	

図 10 ソルバーのパラメータ設定

もう少し,複雑な条件を入れること可能です.例えば,月々の返済額は15万以下,ボーナス月の増分は20万以下としてみます.

- (1) 総返済額を最小にする(目的のセル B9,目標値は最小値).
- (2) 返済額 (B6) とボーナス時返済額 (B7) を変化させる.
- (3) 制約条件
 - (a) 返済額 (B6) は, 15 万以下
 - (b) ボーナス時返済額 (B7) は,返済額 (B6) に 20 万を加えた額以下
 - (c) ボーナス時返済額 (B7) は,返済額 (B6) 以上
 - (d) 240 期末残額は0

この場合のソルバーのパラメータ設定は,図 10 のようになります.借入額や 年利 変わったとき,どうなるのかを試して みます.その結果を次に示します.「実行可能解が見つかりませんでした」と表示された場合,条件を満たす値(返済額 と ボーナス時返済額)が見つからなかったことを表します(ロの場合).

	借入額(設定)	年利(設定)	返済額(結果)	ボーナス時返済額(結果)	注
Ч	2500 万	3.50%	110809	310809	
П	3500 万	5.50%	表示されるが意味なし	表示されるが意味なし	実行可能解無し

動画:シミュレーション:複雑な条件

4 練習問題 4-5 (ステップ返済)

シート「通常」をコピーして、シート「ステップ返済」を作成せよ. A6 を「当初返済額」とします.

ステップ返済(ゆとり返済)

1回から 60回までは当初返済額, 61回(5年後から)当初返済額の 1.5 倍になるように計算式を設定せよ(if 関数を利用 し, G4 から G243 は同じ計算式にしなさい.

ゴールシーク 年利 2%, 返済額 100,000 円のとき, 240 回で返済できる借入額を求めなさい.

※ 2.9 節の練習問題(4-1)と比較してみよう

5 練習問題 4-6 (積立金)

	А	В	С	D	E	F	G	Н
1	1 積立金シミュレーション							
2	180ヶ月(180回)							
3				回数	期首積立額累計	利息	積立額	期末積立額累計
4	一時払い額	100,000		1	100,000	247	100,000	200,247
5	年利	3.00%		2	200,247	494	100,000	300,740
6	毎 <mark>月</mark> 積立額	100,000		3	300,740	742	100,000	401,482
7				4	401,482	990	100,000	502,472
8	180ヶ月後積立額累計	22,779,738		5	502,472	1,239	100,000	603,712
9				6	603,712	1,489	100,000	705,201
10	月利の計算			7	705,201	1,739	100,000	806,940
1	年利+1	1.03		8	806,940	1,990	100,000	908,930
12	12 乘 根	1.002466		9	908,930	2,242	100,000	1,011,172
13	月利(12乗根+1)	0.25%		10	1,011,172	2,494	100,000	1,113,665

図11 積立金

図 11 のように,初期に一時払い金として積み立て,また毎回一定額として積み立てます.月単位で利息が付くとして, 180 回 (15 年)で元利合計いくらになるのかをシミュレーションを行います.

- (1) シート「積立金」に図 11 のような計算表を作成
- (2) X 軸を回数, Y 軸を期末積立金累計額とするグラフを作成しなさい.
- (3) 年利を 0.3%, 一時払い額を 100 万円とする. 180 期積立金累計額を 3000 万にする毎月積立額を求めなさい.
- (4) 一時払い額を 100 万円とする. 年利を 1%,...,10% での 180 期積立金累計額を 3000 万にする毎月積立額をそれぞれ 求めなさい.
- (5)(4)をグラフ化しなさい(横軸を年利,縦軸を積立額とする散布図).
- (6) シート「積立金」をコピーして,「積立金 2」を作成し,4 月から積立(1回の月は4 月)をするとし,毎年,12 月には,1.5 倍の額を積み立てるようにしなさい.