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1 Damped harmonic oscillator
The equation of motion for the damped harmonic oscillator is given as
d? d 5
(mdtz + Zmya + mw > x(t) =0. (1)

As in Feynman Ch. 25, let us denote the differential operator in this equation as L. Then, the equation is
expressed

L(x)=0. (2)

In order to solve the differential equation, three approaches were attempted in the previous lectures: trigono-
metric functions, the McLaurin (power) series expansion, and the ansatz method.

The last one, the ansatz method, is the method that we studied most recently, and it assumes a possible
mathematical form of solutions with parameters to be determined. In the present case, the following ansatz
is known to work

x(t) = €, (3)

where A is a complex parameter to be determined. Inserting this ansatz to the differential equation, we have
a quadratic equation for A
A+ 2yA + w? =0. (4)

With the quadratic formula, we obtain
A=vE+ VY —wi (5)

Let us classify this solution by an integer k in the following way

M=y + (1) Vv - w?, (6)

where k = 0, 1. Therefore, we have two possible solutions for the damped harmonic oscillator, which are

Aot

xo(t) =€ and x(t) =Mt (7)

Obviously,
L) =0 (8)
is satisfled for k =0, 1.

In my previous lecture (on Wednesday, April 26, 2017), I said that the linear combination of the above two
solutions xi(t)
x(t) = coxo(t) + ¢1x1(t), ci being a constant for k =0, 1 (9)

is regarded as the “general” solution of the damped harmonic oscillator. Then, there was a question raised
on this remark:



“You said that the ansatz is assumed to have a single-term form of the exponential, but you also
said that the “general” solution is a linear combination of the two independent solutions, but it
consists of two terms. This result looks contradicting to what you assumed in the beginning,
doesn’t it? We should rather employ the independent solutions separately, shouldn’t we? Say,
x(t) = xo(t), or x(t) = x;(t). What about this?”

This question really hits the centre of the so-called “linear problem” of the differential equation, which is
also discussed in Feynman Ch. 25. Let us rebuild what is discussed in Feynman’s textbook.

2 Linear problem

Differential operators é% satisfies the following property
— (af(t) + bg(t)) = a—f(t) + b—¢g(t 10
o (af(t) +bg(t) = aZf(t) + b glt), (10)

where a,b are constants. This result means that the derivative of the linear combination of functions is
equivalent to the linear combination of the derivatives of the individual functions. Therefore, if x(t) and
x1(t) are the two independent solutions of the equation of motion (1), then the linear combination of these
independent solutions

x(t) = coxo(t) + c1x9(t) (11)

is another solution of Eq.(1). The proof of this remark relies on the “linear property” of Eq.(10):

Suppose t(xo) =0 and f()q) = 0. Then,
T:(C()Xo +cix1) = C()T:(Xo) + C]ﬁ(X]) =0. (12)
The above equation is justified thanks to the linear form of the differential equation (1).

In this way, we have millions of solutions to satisfy the equation of motion (1), by changing cx. Such
individual and special cases can be summarised into the general form (11). For example, x(t) = et simply
corresponds to (co,c1) = (1,0).

Furthermore, suppose that we can find more than three solutions to satisfy the equation of motion (1),
say L(xo) = 0, L(x1) = 0, L(x2) = 0, then the linear combination of these three is again the solution
of the equation of motion. However, the “degrees of freedom” of a differential equation of order n (i.e.,
a differential equation containing a term d"/dt™) is n, so that the equation of motion allows only two
independent solutions (the equation of motion is a second-order differential equation). When xy and x; are
such independent solutions, then x, can be expressed as a linear combination

x2(t) = doxo(t) + dixq(t). (13)
Hence,
x(t) = coxo(t) +cixq(t) + caxz(t)
= (co+do)xo(t) + (c1 +di) x9(t)
= Coxo(t) + Cixq(t). (14)

The linear property of the equation of motion can be broken down, for instance, if we replace the linear
frictional force —2yv(t) with the quadratic friction —2y’v(t)?, or if we replace the harmonic term —w?x(t)
with an anharmonic force —w? (X(t) + ex(t)3). Such equations of motion, or differential equations that
contain “non-linear terms” are called “non-linear equations”, in which the superposition principle, i.e., Egs.
(11) and (12), cannot be applied.



In fundamental theories of physics, linear equations are everywhere. For instance, the Maxwell equations in
the classical electromagnetism, which is to be lectured in the A-semester, are linear differential equations.
The Schrodinger equation in Quantum mechanics is also a linear equation. Therefore, the superposition
principle can be applied to the electrodynamics and quantum mechanics, which plays a significant role to
formulate the theories. Students are strongly recommended to confirm that the Maxwell and Schrodinger
equations satisfy the linear property. (For instance, suppose @y and ®; are two independent wave functions
of the Schrodinger equation. Then, you should examine whether a linear combination co®y + ¢ @ satisfies
the same Schrodinger equation or not.) The concept of the superposition principle leads to an application
of the Fourier series expansion and/or the Fourier transform to these linear problems. For instance, the
electromagnetic field (or the vector potential) can be decomposed in accordance with the Fourier transform.

3 Practical problems if sticking with single-term solution

Let us now discuss what is not written in Feynman’s textbook. Suppose that the single-term solution, x¢(t)
or xi(t), is employed rather than the general solution of the linear combination form. Then, what is wrong
with it?

Firstly, we write down a solution, for instance, as
x(t) = et (15)

Then, what is wrong with this? For the sake of simplicity, we consider the case vy = 0 in the below. Then
the “solution” turns to be

x(t) = e't (16)

As explained in the lecture, the position of a particle of interest needs to be described with a real dynamical
variable. The above quantity is a complex variable, not a real one. You cannot measure a position of
particles with complex numbers.

By utilising a freedom to multiply a complex number C = a + ib to the solution, we might be able to
transform the single-term solution to a real variable. Here, a and b are constant real numbers.

Ce'' = (a+ib) (cos(wt)+ isin(wt))
= {acos(wt) —bsin(wt)}+ i{bcos(wt) + asin(wt)} (17)

To make the imaginary part vanish, we require
b cos(wt) + asin(wt) =0, (18)

but we know that these trigonometric functions are linearly independent to each other. The above condition
is thus satisfied only when a = b = 0, which means C = 0. Surely, x(t) = 0 is the trivial solution, but does
not carry any physical information with regard to the dynamics in Eq.(1). We have to conclude that the
choice of a single-term solution ends up in an absurd result.

Next, we should examine whether or not the linear combination of Eq.(11) satisfies the physical requirement.
To demand x(t) to be a real variable, we should have

x(t) = x(1)*. (19)

In other words, the complex conjugate of the position variable must be equal to the original. With the
superposition, we have
Coelwt + C] e*lwt — cgeflwt + CTelwt) (20)



or
(co— et + (¢ — e ™t =0.

Exponential functions e and e™* are linearly independent since their Wronskian

(21)

eix efix ) ) ]
e —2i(#0). (22)
is evaluated to be non-vanishing. Therefore, we can conclude that
CS = C1, (23)
or
x(t) = coet +cle "
= (cp+cg)cos(wt) +1i(co— cpy)sin(wt)
= 2Re(cp) cos(wt) — 2Im(cp) sin(wt) (24)
If we express Cp = 2Re(co),C1 = —2Im(co) (Cx are both real constants), then x(t) is nothing but a linear

combination of the trigonometric functions, as we already saw in the first lecture (on April 5, 2017).

This result also reminds us of a mathematical nature of a complex number z = x + iy, which carries

information of two “effective” degrees of freedom (x,y).

In summary, only through the linear combination, Eq.(11), one can construct a consistent solution with

the previously obtained solutions, which are expressed by means of the trigonometric functions and the

McLaurin series expansion.



