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A Isotropic two-dimensional Harmonic Oscillator

　For Classical Mechanics A, Univ.Tokyo (2017)

Descriptions: The “Komaba” solution is presented for the two-dimensional harmonic
oscillator in the polar coordinate representation, in contrast to the “Pasadena” solution
presented by Dr. S. Golwala (CalTech).
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1 Isotropic two-dimensional harmonic oscillator in the polar coordinates

The equation of motion for the isotropic two-dimensional harmonic oscillator is given as

m
d2

dt2
r(t) = −mω2r(t), (1)

where the position vector r(t) is given as

r(t) = r(t)

(
cosθ(t)

sinθ(t)

)
≡ r(t)er. (2)

The unit vector er is often referred to as the radial basis vector in the two-dimensional poloar coordinates.
The other basis eθ is defined to be orthogonal to er. The usual definition reads

eθ =

(
− sinθ(t)

cosθ(t)

)
. (3)

The left-hand side of the equation of motion, i.e., the second-order derivative of the position vector, is
expressed in the poloar coordinates as

d2

dt2
r(t) =

(
�r− r _θ2

)
er +

1

r

d

dt

(
r2 _θ

)
eθ. (4)

The equation of motion thus gives the radial equation and the angular momentum conservation

�r− r _θ2 = −ω2r, (5)

mr2 _θ = l(= const.) (6)

Eliminating _θ thanks to the angular momentum conservation, the radial equation becomes

�r = −ω2r+
l2

m2r3
. (7)

2 Energy integral

Multiplying _r = dr
dt

to the both sides in the above equation, we have

d

dt

(
_r2

2
+

ω2r2

2
+

l2

2m2r4

)
= 0. (8)

This equation corresponds to the energy conservation, and we have

_r2

2
+

ω2r2

2
+

l2

2m2r2
= E(= const.) (9)
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3 The potential energy

Regarding the third term in the energy conservation as the centrifugal energy, we can consider the sum of
the second and the third term as the “potential energy”.

U(r) =
ω2r2

2
+

l2

2m2r2
. (10)

The local minimum dU/dr = 0 occurs at

r0 =

√
l

mω
, (11)

and the value of the local minimum is evaluated to be

U(r0) =
lω

m
. (12)

When E = lω
m

, the “kinetic energy” m_r2/2 must be zero due to the energy conservation. Then, the corre-
sponding motion of the oscillator is circular with its radius being r0. The rotational frequency is calculated
through the angular momentum conservation,

ω0 ≡ _θ =
l

mr20
= ω. (13)

4 Scaling of dynamicl variables

Let us introduce the scaling of dynamical variables to simplify the equation of motion. First of all, the
radial coordinate r is scaled to be

r = r0ρ =

√
l

mω
ρ, (14)

where ρ is a unitless dynamical variable to represent the radial coordinate. We may call r0 “the oscillator
length”, as an analogy to the quantum theory of the harmonic oscillator.
Next, the natural time scale can be given in connection to the oscillator frequency ω. From the dimension
analysis, we may write

t = t0τ =
2π

ω
τ. (15)

With these scaling, the energy conservation reads(
r0

t0

)2
1

2

(
dρ

dτ

)2

+ω2r20
ρ2

2
+

l2

2m2r20

1

ρ2
= E. (16)

or (
1

2π

dρ

dτ

)2

+ ρ2 +
1

ρ2
= E , (17)

where the energy is scaled as
E = U(r0)E . (18)

5 Second integral

Now, we are going to attempt the second integral to obain r(t). Firstly, we rewrite the scaled energy
conservation equation to

dρ

dτ
= ±2π

√
E − ρ2 −

1

ρ2
. (19)
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In the literature (including Goldstein), it is recommended to convert the time-derivative to θ-derivative
with help of the angular momentum conservation,

dr

dt
=

dr

dθ
_θ =

l

mr2
dr

dθ
. (20)

together with the variable conversion u = 1/r. Then, we can obtain the formal expression of the second
integral for the potential V = arn+1,

θ = θ0 −

∫u
u0

du√
2mE
l2

− 2ma
l2

u−n−1 − u2
. (21)

According to Goldstein, we can solve this integral analytically for n = 1,−2,−3 in terms of the trigonometric
expressions, and for n = 5, 3, 0,−4,−5,−7 in terms of the (Jacobi’s) ellipitic functions. The ellipitic solutions
are out of our interest in the current consideration, so that we concentrate on the cases n = 1,−2,−3. The
harmonic oscillator corresponds to n = 1, while the gravity (the inverse-square law) and the centrifugal force
correspond to n = −2 and n = −3, respectively. The θ-derivative has an advantage for the negative-power
cases, but the harmonic oscillator receives no benefit for this variable conversion, as demonstrated in the
lecture (by coincidence ...). Therefoe, we directly carry out the time integral in the following.

For the harmonic oscillator, we have

±2π(τ− τ0) =

∫ρ
ρ0

dρ√
E − ρ2 − ρ−2

. (22)

To remove the square root, we introduce ρ =
√
E cosφ. The left-hand side of the above equation then turns

to ∫ρ
ρ0

dρ√
E − ρ2 − ρ−2

= −

∫φ
φ0

sinφdφ√
sin

2φ− 1
E2

cos
2 φ

. (23)

Due to an identity

sin
2φ−

1

E2 cos2φ
=

E2
cos

2φ sin
2φ− 1

E2 cos2φ
=

sin
2(2φ) − 4/E2

4 cos2φ
=

(
1− 4/E2

)
− cos

2(2φ)

4 cos2φ
, (24)

the integral can be rewritten

−

∫φ
φ0

2 sinφ cosφdφ√
(1− 4/E2) − cos2(2φ)

= −
1√

(1− 4/E2)

∫φ
φ0

sin(2φ)√
1− cos

2(2φ)
1−4/E2

dφ. (25)

This is the well-known integral to define the arccos function. By putting cosχ = cos(2φ)/
√

1− 4/E2, we
have the solution of the integral as (−χ+ χ0)/2. That is, the result of the second integral reduces to

±4π(τ− τ0) = −χ+ χ0, (26)

or
cosχ = cos (4πτ+ δ0) . (27)

Here, the phase δ0 is defined as the sum involving the constants τ0 and χ0. Putting back the above result
to the expression with ρ, we have

cos(2φ) = 2 cos
2φ− 1 =

√
1− 4/E2 cos(4πτ+ δ0), (28)

or
ρ2 =

√
E2/4− 1 cos(4πτ+ δ0) + E/2 (29)
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Finally, we can scale back to the original dynamical variables.

r(t) = r0
√
A cos(2ωt+ δ0) + B, (30)

where constats A,B are given as

A =
√
(B − 1)(B + 1), B = E/2, E ≥ 2. (31)

Let us call our solution the “Komaba solution”, in comparison to the “Pasadena solution” presented by Dr.
S. Golwala. It should be interesting to examine why the energy range is restricted to E ≥ 2, which is left to
students for analysis.

6 Meaning of the doubling in rotational frequency

The above solution gives rise to the elliptic trajectory, which coincides with the trajectory produced by the
gravity (the inverse-square law). However, the frequency in the Komaba solution is doubled in comparison
to the original frequency ω. The reason for this doubling should be understood through a physical consid-
eration, which was actually discussed in the lecture. We will come back to this problem again in the gravity
section, where the elliptic trajectory is given in a different mathematical expression,

r(t) =
a(1− ϵ2)

1+ ϵ cos(θ+ δ)
, (32)

where a = −GMm
2E

is the semi-major axis and ϵ denotes the eccentricity

ϵ =

√
1+

2l2E

m3G2M2
. (33)
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