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A Vector potential of the basis in the spherical
coordinates

　 For Electromagnetism A, Univ.Tokyo (2016)

Descriptions: Correction to the last question in QI, in the 2016 final exam, which is about
the vector potential for the basis in the spherical coordinates
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1 Divergence of the spherical-coordinate basis

In the three-dimensional spherical coordinates, the basis are given
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 . (1)

Only the last basis vector, that is, eϕ, gives the vanishing divergence,

∇ · eϕ = 0. (2)

According to a vector identity, div curl = 0, as seen in the Gauss law for the magnetic field, the basis vector
eϕ can be expressed as eϕ = ∇×A. Let us find this vector-potential field A in below.

2 Expression of the derivative operator ∇ in the spherical coordinates

Let us present the expression first.
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We then express the vector potential as

A(r) = Arer +Aθeθ +Aϕeϕ. (4)

Finally, we need to perform the following
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× (Arer +Aθeθ +Aϕeϕ) (5)

To carry out this calculation, we may make use of the following fomrula,� �
(A∂)× (fB) = (∂f)(A× B) + f(A× ∂B), (6)� �

which has been derived when we considered the expression of curls in the cylindrical coordinates.

3 Curl in the spherical coordinates

The obtained result reads

∇×A = er
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The condition we reqire is
eϕ = ∇×A, (8)

so that we need to demand
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to be satisfied.

4 A special case: A(r) = Ar(r)er

In the exam, I asked to find a special solution for the equations above, which is the case when the vector
potential is parallel to the radial basis er. That is,

A(r) = Ar(r, θ, ϕ)er, (12)

which also means Aθ = Aϕ = 0. The first equation of the three differential equations above is satisfied in a
trival way. The second and third equations turn to

∂Ar

∂ϕ
= 0, (13)

∂Ar

∂θ
= −r. (14)

The first equation means that Ar does not depend on variable ϕ, so that Ar = Ar(r, θ). Inserting this result
to the second equation gives rise to

Ar(r, θ) = −rθ+ X(r), (15)

where X(r) is an arbitrary function of r.
Hence,

eϕ = ∇× {(−rθ+ X(r))er} . (16)
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