VECTOR POTENTIAL OF THE BASIS IN THE SPHERICAL

COORDINATES

For Electromagnetism A, Univ.Tokyo (2016)
Descriptions: Correction to the last question in QI, in the 2016 final exam, which is about the vector potential for the basis in the spherical coordinates
[January 15, 2017]

1 Divergence of the spherical-coordinate basis

In the three-dimensional spherical coordinates, the basis are given

$$
\mathbf{e}_{\mathrm{r}}=\left(\begin{array}{c}
\cos \phi \sin \theta \tag{1}\\
\sin \phi \sin \theta \\
\cos \theta
\end{array}\right), \quad \mathbf{e}_{\theta}=\left(\begin{array}{c}
\cos \phi \cos \theta \\
\sin \phi \cos \theta \\
-\sin \theta
\end{array}\right), \quad \mathbf{e}_{\phi}=\left(\begin{array}{c}
-\sin \phi \\
\cos \phi \\
0
\end{array}\right)
$$

Only the last basis vector, that is, \mathbf{e}_{ϕ}, gives the vanishing divergence,

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{e}_{\phi}=0 \tag{2}
\end{equation*}
$$

According to a vector identity, div curl $=0$, as seen in the Gauss law for the magnetic field, the basis vector \boldsymbol{e}_{ϕ} can be expressed as $\mathbf{e}_{\phi}=\boldsymbol{\nabla} \times \boldsymbol{A}$. Let us find this vector-potential field \boldsymbol{A} in below.

2 Expression of the derivative operator ∇ in the spherical coordinates

Let us present the expression first.

$$
\begin{equation*}
\boldsymbol{\nabla}=\mathbf{e}_{\mathrm{r}} \frac{\partial}{\partial r}+\mathbf{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\mathbf{e}_{\phi} \frac{1}{\mathrm{r} \sin \theta} \frac{\partial}{\partial \phi} . \tag{3}
\end{equation*}
$$

We then express the vector potential as

$$
\begin{equation*}
\boldsymbol{A}(\mathbf{r})=A_{\mathrm{r}} \mathbf{e}_{\mathrm{r}}+\mathrm{A}_{\theta} \mathbf{e}_{\theta}+\mathrm{A}_{\phi} \mathbf{e}_{\phi} \tag{4}
\end{equation*}
$$

Finally, we need to perform the following

$$
\begin{equation*}
\boldsymbol{\nabla} \times \boldsymbol{A}=\left(\mathbf{e}_{\mathrm{r}} \frac{\partial}{\partial r}+\mathbf{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}+\mathbf{e}_{\phi} \frac{1}{\mathrm{r} \sin \theta} \frac{\partial}{\partial \phi}\right) \times\left(A_{r} \mathbf{e}_{\mathrm{r}}+A_{\theta} \mathbf{e}_{\theta}+A_{\phi} \mathbf{e}_{\phi}\right) \tag{5}
\end{equation*}
$$

To carry out this calculation, we may make use of the following fomrula,

$$
\begin{equation*}
(\mathbf{A} \partial) \times(f \mathbf{B})=(\partial f)(\mathbf{A} \times \mathbf{B})+f(\mathbf{A} \times \partial \mathbf{B}) \tag{6}
\end{equation*}
$$

which has been derived when we considered the expression of curls in the cylindrical coordinates.

3 Curl in the spherical coordinates

The obtained result reads

$$
\begin{align*}
\boldsymbol{\nabla} \times \boldsymbol{A} & =\mathbf{e}_{r}\left(\frac{1}{r} \frac{\partial A_{\phi}}{\partial \theta}-\frac{1}{r \sin \theta} \frac{\partial A_{\theta}}{\partial \phi}+A_{\phi} \frac{\cos \theta}{r \sin \theta}\right)+\mathbf{e}_{\theta}\left(-\frac{\partial A_{\phi}}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{A_{\phi}}{r}\right) \\
& +\mathbf{e}_{\phi}\left(\frac{\partial A_{\theta}}{\partial r}-\frac{1}{r} \frac{\partial A_{r}}{\partial \theta}+\frac{A_{\theta}}{r}\right) \tag{7}
\end{align*}
$$

The condition we reqire is

$$
\begin{equation*}
e_{\phi}=\nabla \times A, \tag{8}
\end{equation*}
$$

so that we need to demand

$$
\begin{align*}
\frac{1}{r} \frac{\partial A_{\phi}}{\partial \theta}-\frac{1}{r \sin \theta} \frac{\partial A_{\theta}}{\partial \phi}+A_{\phi} \frac{\cos \theta}{r \sin \theta} & =0 \tag{9}\\
-\frac{\partial A_{\phi}}{\partial r}+\frac{1}{r \sin \theta} \frac{\partial A_{r}}{\partial \phi}-\frac{A_{\phi}}{r} & =0 \tag{10}\\
\frac{\partial A_{\theta}}{\partial r}-\frac{1}{r} \frac{\partial A_{r}}{\partial \theta}+\frac{A_{\theta}}{r} & =1 . \tag{11}
\end{align*}
$$

to be satisfied.

4 A special case: $\boldsymbol{A}(\mathbf{r})=\mathcal{A}_{\mathrm{r}}(\mathbf{r}) \boldsymbol{e}_{\mathrm{r}}$

In the exam, I asked to find a special solution for the equations above, which is the case when the vector potential is parallel to the radial basis $\boldsymbol{e}_{\mathrm{r}}$. That is,

$$
\begin{equation*}
\boldsymbol{A}(\mathbf{r})=\mathcal{A}_{\mathrm{r}}(\mathrm{r}, \theta, \phi) \boldsymbol{e}_{\mathrm{r}} \tag{12}
\end{equation*}
$$

which also means $A_{\theta}=A_{\phi}=0$. The first equation of the three differential equations above is satisfied in a trival way. The second and third equations turn to

$$
\begin{align*}
& \frac{\partial A_{r}}{\partial \phi}=0 \tag{13}\\
& \frac{\partial A_{r}}{\partial \theta}=-\mathrm{r} . \tag{14}
\end{align*}
$$

The first equation means that A_{r} does not depend on variable ϕ, so that $A_{r}=A_{r}(r, \theta)$. Inserting this result to the second equation gives rise to

$$
\begin{equation*}
A_{r}(r, \theta)=-r \theta+X(r), \tag{15}
\end{equation*}
$$

where $X(r)$ is an arbitrary function of r.
Hence,

$$
\begin{equation*}
\boldsymbol{e}_{\phi}=\boldsymbol{\nabla} \times\left\{(-\mathrm{r} \theta+X(\mathrm{r})) \boldsymbol{e}_{\mathrm{r}}\right\} . \tag{16}
\end{equation*}
$$

